R/pcaLDA.R
pcaLDA.Rd
The principal components (PCs) for predictor variables provided as input data are estimated and then the individual coordinates in the selected PCs are used as predictors in the LDA
Predict using a PCA-LDA model built with function 'pcaLDA'
pcaLDA(
formula = NULL,
data = NULL,
grouping = NULL,
n.pc = 1,
scale = FALSE,
center = FALSE,
tol = 1e-04,
method = "moment",
max.pc = NULL,
columns = 9L,
...
)
predict.pcaLDA(
object,
newdata,
type = c("lda.pred", "class", "posterior", "scores", "pca.ind.coord", "all"),
...
)
Same as in lda
from package 'MASS'.
Same as in lda
from package 'MASS' or an
object from "pDMP" or "InfDiv" class.
Same as in lda
from package 'MASS'.
Number of principal components to use in the LDA.
Same as in prcomp
from
package 'prcomp'.
Same as in lda
from package 'MASS'.
Optional. Only used if 'data' belong to the "pDMP" or "InfDiv" class. Default is 9L.
Not in use.
To use with function 'predict'. A 'pcaLDA' object containing a list of two objects: 1) an object of class inheriting from 'lda' and 2) an object of class inheriting from 'prcomp'.
To use with function 'predict'. New data for classification prediction
To use with function 'predict'. The type of prediction
required. The default is 'all' basic predictions: classes and posterior
classification probabilities. Option 'lda.pred' returns the object given by
function 'predict.lda' from MASS package: 'class', 'posterior', 'scores'
(cases scores on discriminant variables, see lda
.
Function 'pcaLDA' returns an object ('pcaLDA' class) consisting of list with two objects:
'lda': an object of class lda
from package
'MASS'.
'pca': an object of class prcomp
from package
'stats'.
For information on how to use these objects see ?lda and ?prcomp.
The principal components (PCs) are obtained using the function 'prcomp' from R package 'stats', while the LDA is performed using the 'lda' function from R package 'MASS'. The current application only uses basic functionalities of mentioned functions. As shown in the example, pcaLDA' function can be used in general classification problems.
pcaQDA
, lda
and
predict.lda
data(iris)
ld1 <- pcaLDA(formula = Species ~ Petal.Length + Sepal.Length + Sepal.Width,
data = iris, n.pc = 1, max.pc = 2, scale = TRUE, center = TRUE)
## ===== Prediction ===== ##
ld2 <- pcaLDA(formula = Species ~., data = iris, n.pc = 1, max.pc = 2,
scale = TRUE, center = TRUE)
set.seed(123)
idx <- sample.int(150, 40)
newdata <- iris[idx, 1:4]
newdata.prediction <- predict(ld2, newdata = newdata)
## ==== The confusion matrix
x <- data.frame(TRUE.class = iris$Species[idx],
PRED.class = newdata.prediction$class)
table(x)
#> PRED.class
#> TRUE.class setosa versicolor virginica
#> setosa 12 0 0
#> versicolor 0 12 2
#> virginica 0 1 13