This function applies predict.randomForest to a 'pDMP' object provided in the argument \(newdata\).

predict(object, newdata = NULL, ...)

# S4 method for RandomForest,GRanges
predict(
  object,
  newdata,
  type = c("class", "response", "prob", "votes"),
  predict.all = FALSE,
  keep.data = FALSE,
  ...
)

# S4 method for RandomForest,pDMP
predict(
  object,
  newdata,
  type = c("class", "response", "prob", "votes"),
  predict.all = FALSE,
  keep.data = FALSE,
  num.cores = 1L,
  tasks = 0L,
  ...
)

# S4 method for randomForestformula,GRanges
predict(
  object,
  newdata,
  type = c("class", "response", "prob", "votes"),
  predict.all = FALSE,
  keep.data = FALSE,
  ...
)

# S4 method for randomForestformulaList,GRangesList
predict(
  object,
  newdata,
  type = c("class", "response", "prob", "votes"),
  predict.all = FALSE,
  keep.data = FALSE,
  num.cores = 1L,
  tasks = 0L,
  ...
)

Arguments

object

an object of 'RandomForest-class', as that created by the function evaluateDIMPclass. If \(newdata\) is a GRanges-class, then 'newdata' must be an element of a pDMP-class object, i.e., it must have the same structure as the GRanges-class elements in a pDMP-class object.

newdata

A 'pDMP' object generated with function selectDIMP.

predict.all, type, ...

The same as in predict.randomForest.

keep.data

Logical. Whether to preserve the original class from object \('newdata'\). If TRUE, then the predicted class and the posterior probability of the treatment class are added as a metacolumns of \('newdata'\).

num.cores, tasks

Parameters for parallel computation using package BiocParallel-package: the number of cores to use, i.e. at most how many child processes will be run simultaneously (see bplapply and the number of tasks per job (only for Linux OS).

Value

The same results as given by function predict.randomForest.

Details

The generic function just call function predict from 'stats' R package.

If \(newdata\) is a GRanges-class, then 'newdata' must be an element of a pDMP-class object, i.e., it must have the same structure as the GRanges-class elements in a pDMP-class object.

Author

Robersy Sanchez https://genomaths.com

Examples

## Load a DMP data set
data(dmps, package = 'MethylIT')

## Let's accomplish the classification by using Random Forest
## algorithm
perf <- evaluateDIMPclass(LR = dmps,
                          column = c(hdiv = TRUE, TV = TRUE,
                                     wprob = TRUE, pos = TRUE),
                          classifier = 'random_forest',
                          n.pc = 4L,
                          control.names =  c('C1', 'C2', 'C3'),
                          treatment.names = c('T1', 'T2', 'T3'),
                          center = FALSE,
                          scale = FALSE,
                          prop = 0.6)

predict(object = perf$model, newdata = dmps, keep.data = TRUE)
#> pDMP object of length: 6
#> ------- 
#> $C1
#> GRanges object with 45 ranges and 13 metadata columns:
#>        seqnames    ranges strand |        c1        t1        c2        t2
#>           <Rle> <IRanges>  <Rle> | <numeric> <numeric> <numeric> <numeric>
#>    [1]        1       233      - |        40       122       162         0
#>    [2]        1       732      + |        50       154       200         4
#>    [3]        1      1045      - |        45       115       160         0
#>    [4]        1      1409      - |        44       132       176         0
#>    [5]        1      1739      - |        48       145       193         0
#>    ...      ...       ...    ... .       ...       ...       ...       ...
#>   [41]        1      8945      - |        37       111       148         0
#>   [42]        1      9205      + |        47       144       188         3
#>   [43]        1      9238      - |       156        55         0       211
#>   [44]        1      9249      + |        52       138       187         3
#>   [45]        1      9383      - |        40       122       162         0
#>               p1         p2        TV    bay.TV      hdiv      jdiv       wprob
#>        <numeric>  <numeric> <numeric> <numeric> <numeric> <numeric>   <numeric>
#>    [1]  0.245757   0.989442  0.753086  0.743685   136.153   3.03720 0.001431041
#>    [2]  0.244258   0.972183  0.735294  0.727925   150.759   2.45917 0.000747885
#>    [3]  0.277937   0.989312  0.718750  0.711375   124.864   2.81337 0.002371176
#>    [4]  0.248754   0.990272  0.750000  0.741518   148.040   3.06399 0.000843622
#>    [5]  0.247631   0.991120  0.751295  0.743489   164.066   3.12473 0.000415743
#>    ...       ...        ...       ...       ...       ...       ...         ...
#>   [41]  0.248534 0.98845689  0.750000  0.739923   122.543   2.96573 0.002631713
#>   [42]  0.245127 0.97548911  0.738220  0.730362   143.991   2.53338 0.001009617
#>   [43]  0.714772 0.00156955 -0.739336 -0.713202   183.531   3.79371 0.000177204
#>   [44]  0.271268 0.97536149  0.710526  0.704094   134.321   2.37020 0.001552899
#>   [45]  0.245757 0.98944187  0.753086  0.743685   136.153   3.03720 0.001431041
#>           class posterior
#>        <factor> <numeric>
#>    [1]       CT    0.1100
#>    [2]       CT    0.0050
#>    [3]       CT    0.0725
#>    [4]       CT    0.0275
#>    [5]       CT    0.0050
#>    ...      ...       ...
#>   [41]       CT    0.1225
#>   [42]       CT    0.0325
#>   [43]       CT    0.0300
#>   [44]       CT    0.0550
#>   [45]       CT    0.1075
#>   -------
#>   seqinfo: 1 sequence from an unspecified genome; no seqlengths
#> 
#> ...
#> <5 more GRanges elements>
#> -------