R/estimateDirichDist.R
estimateDirichDist.Rd
The parameter estimation is accomplished using a count data matrix. The estimation is based on the fact that if a variable \(x = (x_1, x_2, ...x_n)\) follows Dirichlet Distribution with parameters \(\alpha = \alpha_1, ... , \alpha_n\) (all positive reals), in short, \(x ~ Dir(\alpha)\), then \(x_i ~ Beta(\alpha_i, \alpha_0 - \alpha_i)\), where Beta(.) stands for the Beta distribution and \(\alpha_0 = \sum \alpha_i\).
Dirichlet distribution is a family of continuous multivariate probability distributions, a multivariate generalization of the Beta distribution.
estimateDirichDist(
x,
start = NULL,
num.cores = 1L,
tasks = 0L,
seed = 123,
refit = TRUE,
verbose = TRUE,
...
)
A matrix or a data.frame object carrying count data.
Initial parameter values for \(\alpha = \alpha_1, ... , \alpha_n\) (all positive reals). Defaults is NULL.
Parameters for parallel computation using
BiocParallel-package
: the number of cores to
use, i.e. at most how many child processes will be run simultaneously (see
bplapply
and the number of tasks per job (only
for Linux OS).
if TRUE, prints the function log to stdout and a progress bar
Further arguments for betaDistEstimation
function.
A vector of estimated parameter values
As any non-linear fitting, results strongly depends on the start parameter values.
#' ## A random generation numerical vectors with
x <- rdirichlet(n = 1000, alpha = c(2.1, 3.1, 1.2))
head(x)
#> a1 a2 a3
#> [1,] 0.4168350 0.5197227 0.06344232
#> [2,] 0.1273661 0.5615770 0.31105695
#> [3,] 0.2937281 0.5000729 0.20619906
#> [4,] 0.1761859 0.5912126 0.23260156
#> [5,] 0.6001897 0.3025950 0.09721535
#> [6,] 0.2455860 0.4635076 0.29090639
estimateDirichDist(x)
#> $alpha
#> [1] 2.211949 3.462360 1.231335
#>
#> $marginals
#> $marginals$a1
#> Estimate Std.Error t_value Pr(>|t|) Adj.R.Square rho R.Cross.val
#> shape1 2.211949 0.01144309 193.2999 <1e-16 0.9999984 0.9999984 0.9996673
#> shape2 4.722073 0.03163860 149.2504 <1e-16 NA NA NA
#> AIC BIC n
#> shape1 -6935.663 -6920.94 1000
#> shape2 NA NA NA
#>
#> $marginals$a2
#> Estimate Std.Error t_value Pr(>|t|) Adj.R.Square rho R.Cross.val
#> shape1 3.462360 0.0165572 209.1151 <1e-16 0.9999983 0.9999983 0.9997052
#> shape2 3.578023 0.0316386 113.0904 <1e-16 NA NA NA
#> AIC BIC n
#> shape1 -7035.97 -7021.247 1000
#> shape2 NA NA NA
#>
#> $marginals$a3
#> Estimate Std.Error t_value Pr(>|t|) Adj.R.Square rho
#> shape1 1.231335 0.007393049 166.5531 <1e-16 0.9999993 0.9999993
#> shape2 5.262551 0.031638600 166.3332 <1e-16 NA NA
#> R.Cross.val AIC BIC n
#> shape1 0.9997919 -7374.791 -7360.067 1000
#> shape2 NA NA NA NA
#>
#>
#> attr(,"class")
#> [1] "DirchModel" "list"