R/betaDistEstimation.R
betaDistEstimation.Rd
This function perform a rough estimation of the shape parameters of beta distribution
prior probabilities
initial parameter values. Defaults to alpha = 1 & beta = 1, which imply the parsimony pseudo-counts greater than zero.
Whether to force the use of optim
function for the parameter estimation. Default is FALSE.
if TRUE, the hessian of f at the minimum is returned.
(Optional). In the case that
nlm
function fails, the methods, list of control
parameters, and bounders to be used with optim
to
accomplish the parameter estimation.
(Optional). In the case that nlm
function fails, a list of control parameters to be used with
optim
function (see function help: ?optim) accomplish
the parameter estimation.
Further parameter for nlm
function.
A list with components, which would vary depending on whether the
estimation was performed with nlm
or
optim
. In all the cases the list element carrying
the estimated parameters values is named parameters.
In order to obtain the estimates for shape parameters of beta
distribution, the squared of the difference between the empirical cumulative
distribution function (ecdf) & the theoretical cdf is minimized using the
Non-Linear Minimization function nlm
'stats' package.
If nlm
function fails, then an estimation using
optim
function is tried.
### A random generation numerical values with Beta distribution
x1 <- rbeta(n = 1000, shape1 = 2, shape2 = 3)
### Parameter estimation with "nlm" function
betaDistEstimation(q = x1, gradtol = 1e-12, hessian = TRUE)
#> Estimate Std.Error t_value Pr(>|t|) Adj.R.Square rho R.Cross.val
#> shape1 2.176624 0.01407371 154.6589 <1e-16 0.9999991 0.9999991 0.9998606
#> shape2 3.278204 0.03163860 103.6141 <1e-16 NA NA NA
#> AIC BIC n
#> shape1 -7830.738 -7816.015 1000
#> shape2 NA NA NA
### Parameter estimation with "optim" function
betaDistEstimation(q = x1, force.optim = TRUE, hessian = TRUE)
#> Estimate Std.Error t_value Pr(>|t|) Adj.R.Square rho R.Cross.val
#> shape1 2.176663 0.01407371 154.6616 <1e-16 0.9999991 0.9999991 0.9998606
#> shape2 3.278265 0.03163860 103.6160 <1e-16 NA NA NA
#> AIC BIC n
#> shape1 -7830.738 -7816.015 1000
#> shape2 NA NA NA