BICmodel {usefr} | R Documentation |
this function permits the estimation of the BIC for models for which the function 'BIC' from 'stats' packages does not work.
BICmodel(model = NULL, residuals = NULL, np = NULL)
model |
if provided, it is an R object from where the residuals and model parameters can be retrieved using resid(model) and coef(model), respectively. |
residuals |
if provided, it is numerical vector with the residuals: residuals = observe.values - predicted.values, where predicted values are estimated from the model. If the parameter 'model' is not provided, then this parameter must be provided. |
np |
number of model parameters. If the parameter 'model' is not provided, then 'np' and 'residuals' must be provided. |
if for a given model 'm' BIC(m) works, then BICmodel(m) = BIC(m).
BIC numerical value
Robersy Sanchez (https://genomaths.com).
set.seed(77) x = runif(100, 1, 5) y = 2 * exp(-0.5 * x) + runif(100, 0, 0.1) plot(x, y) nlm <- nls(Y ~ a * exp( b * X), data = data.frame(X = x, Y = y), start = list( a = 1.5, b = -0.7), control = nls.control(maxiter = 10^4, tol = 1e-05), algorithm = "port") ## The estimations of Akaike information criteria given by BIC' function ## from stats' R package and from 'AICmodel' function are equals. BICmodel(nlm) == BIC(nlm) ## Now, using residuals from the fitted model: res = y - coef(nlm)[1] * exp(coef(nlm)[2] * x) BICmodel(residuals = res, np = 2) == BIC(nlm)