this function permits the estimation of the BIC for models for which the function 'BIC' from 'stats' packages does not work.
BICmodel(model = NULL, residuals = NULL, np = NULL)
if provided, it is an R object from where the residuals and model parameters can be retrieved using resid(model) and coef(model), respectively.
if provided, it is numerical vector with the residuals: residuals = observe.values - predicted.values, where predicted values are estimated from the model. If the parameter 'model' is not provided, then this parameter must be provided.
number of model parameters. If the parameter 'model' is not provided, then 'np' and 'residuals' must be provided.
BIC numerical value
if for a given model 'm' BIC(m) works, then BICmodel(m) = BIC(m).
set.seed(77)
x <- runif(100, 1, 5)
y <- 2 * exp(-0.5 * x) + runif(100, 0, 0.1)
plot(x, y)
nlm <- nls(Y ~ a * exp(b * X),
data = data.frame(X = x, Y = y),
start = list(a = 1.5, b = -0.7),
control = nls.control(maxiter = 10^4, tol = 1e-05),
algorithm = "port"
)
## The estimations of Akaike information criteria given by BIC' function
## from stats' R package and from 'AICmodel' function are equals.
round(BICmodel(nlm), 3) == round(BIC(nlm), 3)
#> [1] TRUE
## Now, using residuals from the fitted model:
res <- y - coef(nlm)[1] * exp(coef(nlm)[2] * x)
round(BICmodel(residuals = res, np = 2), 3) == round(BIC(nlm), 3)
#> [1] TRUE